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Abstract. We determine a class of time-dependent potentials that support the state reconstruction
of one-dimensional wave packets. For this we extend the projection method (Leonhardt U and
Rayme M G 1996 Phys. Rev. Lett.76 1985) to explicitly time-dependent situations. We
require the existence of Wronskian pairs (regular and irregular wavefunctions) and analyse the
consequences on the possible potentials.

Quantum-mechanical wave packets travelling in known but otherwise arbitrary potentials
possess an interesting property: the motion of the packet reveals the quantum state [1-4].
The spatio-temporal probability distribution(pt ) of the corresponding particles contains
sufficient information to retrieve the density matriy,, of the wave packet (denoted in
the energy representation). This theoretical concept [1-4] unifies and generalizes several
experimental methods of state determination: Optical homodyne tomography [5—-7], molecular
fluorescence tomography [8, 9], and atomic-beam tomography [10]. Up to now, however, the
concept[1-4] has been restricted to stationary potentialst. State reconstruction of wave packets
travelling in time-dependent potentials is interesting, because the motion could increase in
complexity (most notably in quantum chaos). Furthermore, the phase retrieval of nonlinear
waves [12] is based on an effective time-dependent potential. This problem is particularly
relevant [12] for the state determination of travelling Bose—Einstein condensates observed in
phase-contrastimaging [13]. Canwe extend the ideas developed for stationary potentials [1—4]
to the time-dependent case [14]?

What are these ideas? The density maiyjxin the energy representation is reconstructed
as the average

d *
Pmn = <<a[l/fm (X, t) Qon(x, t)]>> (1)

x,1
with respect to the measured positianat all timesr. By (F (x, 1)) .., we denote the average
+T/2

(F(x,t) )rs = Tlmo T‘1/ / b pr(x,t) F(x,t)dx dr )

~T/2

Tt Permanent address: Department of Nonlinear and Quantum Optics, PO Box 49, H-1525 Budapest, Hungary.
T After submission of this paper, aletter [11] appeared that describes a hydrodynamical method for state reconstruction
of wave packets that travel in potentially time-dependent potentials.
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of a functionF (x, r) with respect to the spatio-temporal probability distributiotxpr). Here
Yn(x, 1) = up (x)e™'’ On(x, 1) = vy (x) e 3)

denote the regular and irregular wavefunctions of the energy eigengtaté&or simplicity
we assume a discrete spectrum. For the continuous case see [15].) Both the regular and the
irregular wavefunctions are solutions of the Sitinger equation

i('bn = _%‘py,l, +Udy (4)

in appropriate units. Regular wavefunctions are normalized to unity, whereas irregular ones
obey the Wronskian condition

W, = u,v, — u,v, = 2. 5)

The condition implies [3] that irregular wavefunctions must not be normalizable. Analytic
examples of irregular wavefunctions are given in [16—18]. The key mathematical property of
the spatial derivativéy ¢, )’ of regular and irregular wavefunction is the fact [1-4] that these
objects form an orthonormal system on products of wavefunciions’, i.e.

+T/2 p+oo

D" = lim T71 VU (Y ,) dx df = 8,800 (6)
s T—o0 -7/2 J-0 m

Therefore, (¥ ¢,) projects the density-matrix elemengts,, out of the spatio-temporal

probability distribution

proe, ) = (x, 11 p1x, 1) = Y putu(x, D Y (x, 1), 7
Y

State reconstruction of wave packets fronwpr) is a non-trivial property, because some
counterexamples are known [19] for multi-dimensional spaces where the mapping between
pr(x, t) and the quantum state is not unique. Therefore, to extend state reconstruction to the
case of time-dependent potentials, we seek a similar structure as in the stationary case. There
are no stationary states in general, but we might assume that a basis ofistatasts that
have pairs of regular and irregular wavefunctigngx, ) ande, (x, ). What do we mean by
that? Let us assume that the functignsandg, are solutions of the Sctdinger equation (4)
that form aWronskian pair

Vo = YVl = Wa W, =0. (8)

How to find the wavefunctiong,, andg, will not concern us at the moment; we will come to
this point later. Let us first examine the implications of the sheer existence of Wronskian pairs.
Given a functiony,,, equation (8) formulates a differential equation ggrwith the solution

dx
9
Y, ®)

as is easily verified. The integration in the solution (9) is an undetermined integral with the
set of integration constants corresponding to the set of unique solutions of the differential
equation (8). Therefore, equation (9) is the general solution of (8). Equation (9) thus describes
uniquely the relation between the two functiopsande, that form a Wronskian pair (8).

To proceed, we expand the wavefunctignsdn (real) amplitude and (real) phase functions

wn — uneisn. (10)
We see from (9) thap, has the same phase factoryas
©On = vneiS” (11)

On = W, wn
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and the amplitude

v, = Wnun/%. (12)
Let us formulate the Schdinger equation (4) in terms of amplitude and phase:

~Lu/ +(U+182+8,)u, =0 (13)

ly + 380U, + Spul, =0 (14)

(and identical equations far,). Equation (13) plays the role of the stationary Schinger
equation in the explicitly time-dependent case. We see that the potenisahodified by the
term%S,’f+Sn that contains the spatial structure and the evolution of the ghageguation (14)
is a form of the conservation law for the probability densifywith the probability fluxs’ u?2,
because from (14) we obtain the result that?)/dz + (S u?)’ vanishes.

We show in appendix A that, satisfies the Scbdinger equation (13) automatically,
whereas the probability conservation (14) seriously restricts the possible choice of the phase
functionss,,

1w,

" _ M 15
" 2w, (15)
The phaseS, is a quadratic function in space
2
Sy = an (1) % + by (1)x = 2, 0. (16)

Given the structure (16) of the phasg, we utilize the probability conservation (14) to
determine the structure of the amplitudgs We show in appendix B thai, (x, t) is a scaled
functionw, (¢) such that
wy =n"w,x/n=¢)  n=n@ ¢=¢@) (17)
an=n""n  by=1¢. (18)
The irregular wavefunctions obey the same scaling.

We have seen that the existence of Wronskian pairs does restrict the wavefunctions. Let

us require another property that originates from the normalization
D" =1 (19)

of the desired orthogonal system (6) on products of wavefunctions. From (10) and (11) we
obtain
+T/2 p+oo
Dy, = lim Tﬁl/ / Ut [ U V) + (S}, — S\ vy | dx d. (20)
T—o0 -7/2 J-0
In order to guarantee th&”” is real we require thats/, — S/) be zero, i.e.
Sp =8, 1) — Q,(1). (21)
From (16) and (18) we obtain
5
S(x,t) = nroy nex. (22)
n 2
This result restricts the class of potenti&lgx, t). To see this we define the function
F,=U+31s?+5-Q, (23)
and show in appendix C th&t, obeys the scaling
F,=n"2Gu(x/n—0). (24)
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Therefore we are lead to the requirement that the spatially independent parscdles as

Q,(1) = (25)

2(t)
The set of constants, play the role of energy eigenvalues and will be determined soon. We
obtain for the phases

P
Sn(x,t)=ﬁx—+n€x—wn/g. (26)
n 2 n?

FurthermoreF, + €, should scale as
Fy+Q,=U+38%+8=n72V(x/n—0). (27)

We use this scaling property and equation (22) to obtain the class of potentials that support a
Wronskian pair (8) with the property (21):
i x? n C

U=n2V(x/n—2¢)— = = — i +ni)x — ——— (28)
n 2 2

This is the central result of our paper. The existence of Wronskian pairs (8) with the property
(21) restricts the class of time-dependent potentidls, t). Apart from a quadratic term they
are scaled and shifted stationary potentidlg). The explicit time dependence is brought
about by the scaling functiom(z) and the potentially time-dependent skitt).

We also employ the scaling property (27) to find the set of wavefunctions and the numbers
w,. The amplitudes, obey (13) and, consequently,

—Suy + 0PV (/0 — Oy = 1 2wty (29)

We apply the scaling (17) of the wavefunctions and see thabjlig) are the eigenfunctions
of the stationary Sclidinger equation

1 d?w,
T2 dg2
with potentialV (§) and eigenvalues,. The irregular wavefunction are then given by (12).

So far, we were concerned about the implications of the existence of Wronskian pairs (8) in
the case of a time-dependent potential. We determined the class of potentials that support such
pairs. Finally, we prove that our mathematical objects are indeed useful for state reconstruction.
We consider the overlap (6), utilize the structure (10) and (11) of the wavefunctions and the
phases (26) to obtain

V(é}-)wn = Wy Wy (30)

+T/2
DI = I|m T‘1/T/2 / ity U vy) eXPi(wn — @, — 0, +w,)0] dx dr (31)
with
dr
0(r) = ey (32)

We see from the scaling of the wavefunctions, equations (17), that the spatial inteDfgl in
scales as

+00 1 A

Uty Umvy) dx o —— = 0(1). (33)
/,oo " n2(t)

We employé as an integration variable in the temporal integral in (31), which is always

possible, becauge= n~2 > 0. We see thaD! vanishes unless

O — Oy = Wy — O, (34)
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This frequency constraint is one cornerstone of the orthogonality proof fofuthe,)’ on

the products of wavefunctions,«,. In addition, we note that the amplitudes and v,

are solutions of the Scbdinger equation (13) with the effective potentiak %S’Z + S and

the eigenfrequencies,. Then we apply the reconstruction theorem [1] of one-dimensional
Schiddinger equations to prove that

DI o 8yumBun- (35)

We refer the reader to [3, section 3] for an extensive review of the underlying mathematics.
Finally, we turn to the normalizatio®!” = 1. We perform a three-line calculation
starting from equations (20) and (21), and, obserWng= u,v, — u, v, andW, = 0, obtain
+T/2

+00
D" = lim 71 / Uty (U v,) dx dt
T—o0 -T/2 J—o00

. +T/2 p+oo
lim T’lf / [Woui2 + (umit) v, ] dx dt

T—o0 T/2

+T/2

= lim T‘lf W, dt — DI (36)
T—o0 -T2

We see from (36) that the time average of the Wronskaris twice the overlap integrad’”.

The normalizatiorD);” = 1 thus implies that

+T)2
lim T‘lf W, dr = 2. (37)
T—o0 -T2

This generalizes the Wronskian condition (5) to our case of explicitly time-dependent
potentials.

In summary, state reconstruction of one-dimensional wave packets moving in time-
dependent potentials is possible but restricted to a particular class (28) of potentials, if we
require a similar structure (8) as in the time-independent case [1-4]. In essence, the allowed
potentialsU (x, t) are appropriately scaled and shifted stationary potentidls) with an
additional quadratic term. The time dependence is brought about by an arbitrary gcaling
and shiftz(r). Of course, our result does not prove that otherwise state reconstruction is
impossible, but a radically different approach is required. In fact, Johansen [11, 20] has
recently found a hydrodynamical method for determining the state of a wave packet that moves
in a (potentially) time-dependent potential. Here the density métrix y, 1| 6 | x — y, fo)
in position representation is reconstructed from the assumed knowledge of all temporal
derivatives of the probability distribution @r, #o) at a certain timeg. This is equivalent
to knowledge of the total spatio-temporal evolutiorixpr), i.e. to our case, if and only if
pr(x, t) is an analytic function im on the real axis. Furthermore, Johansen [11] represents the
density matrixx +y, 10| o | x — y, to) as a power Seri€s -, f,(x, to)(n")~1(2iy)", assuming
(x +y,t0]0|x — y, to) to be analytic iny for all values ofx.

We may speculate that quantum chaos might limit guantum-mechanical state
reconstructions. Why? Classical state measurements are difficult for a chaotic system. The
evolution of the system may show little (or a drastic) influence of the initial conditions.
Therefore we would expect problems in quantum state determinations due to quantum
signatures of chaos [21]. Expressed in terms of the hydrodynamic approach, chaos may
render the probability distribution pr, ) and the density matrixx + y, ¢ | o |x — y, t) less
analytic. Note also that our class of allowed potentials correspond to regular motions of wave
packets, because thé(x, r) support a complete set of wavefunctions (17) that are scaled
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energy eigenfunctions of the potentla{&). Therefore, to close this paper with a speculation,
the onset of quantum chaos may indeed limit our fundamental ability to infer quantum states
from moving wave packets.
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Appendix A

In this appendix we determine the structure of the phase fa§jdhat is compatible with the
existence of a Wronskian pair (8). We will see that the probability conservation (14) imposes
a serious constraint. Let us start from the relation (12) between the irregular and regular
wavefunctions

d
v, = Wyt / —. (A1)
un
We take the first and the second spatial derivative, and get
d Wn
=, [ e (A2)
Uy Uy
d
v,;’zu;;wn/—’z‘. (A.3)
uVl
Therefore
L+ (U+382+8,)v, =0 (A.4)

is satisfied, becausg solves the identical equation (13). Let us see what

+ 28/, +Spv, =0 (A.5)

n-n

i.e. the probability conservation fow,, requires. We differentiate the irregular
wavefunction (A.1) with respect to the timeget

d d
—qux+un W/x (A.6)
and therefore
0 dx W,
: 1¢gr A r W
Un+§Sanl+Snvn _un(EWI/u_’Zl-'_Snu_%) (A7)

The right-hand side of this equation vanishes if

W / dr +8,— W” —o. (A.8)
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We take the spatial derivative of this equation and use the probability conservation (14) for the
regular wavefunctions to obtain

o O (W), g Wo (W '
AN " u? "\ u?

= = (Watty — 2Wyit, + S Wyt — 28, Wy, )

= = (W, +2S,W,) (A-9)

~% with W =0. (A.10)

The phases,, are restricted to be quadratic functionscin

Appendix B

In this appendix we determine the wavefunctiapghat satisfy

i, + %aun + (ax +b)u), = 0. (B.1)
We try the scaling ansatz
up =n"w, ) E=x/n(0) =) (B2)
and differentiate
. 17 -1/2 dw,(¢) (1 :
n=— "3 "Un— —0 | 5x+ B.3
i = = i = VA= (e (8.3)
_120w, () 1
r 1/2
u, =1 _— . (B.4)
d 7
The term in (B.1) that is proportional ig, vanishes if
a="1 (B.5)
n
The term that contains the derivatived/d¢ is zero if, in addition,
b=nt. (B.6)

In this way we have found the general solution of (B.1).

Appendix C

In this appendix we determine the scaling of

F,=U+1s?+5-Q,. (C.1)
In terms of theF,, the Schoédinger equation (13) reads as

u, = 2F,u,. (C.2)
Therefore

i) = 2(Fyuy + Fyity) = 2(Fyuy — 18" Fyu, — S'Fyul,) (C.3)
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using the probability conservation (14). On the other hand, we take the second spatial derivative
of (14), observes” = 0, and get

u, = —%S”u;’ — S'u)) = —58"F, — 2§8'Fyu, — 2S5’ F u,. (C.4)
We combine equations (C.3) and (C.4) to obtain

F,+2S"F,+S'F =0 (C.5)
or, via the quadratic structure (16) of the ph&se

F, +2aF, + (ax +b)F, = 0. (C.6)
We proceed along similar lines as in appendix B and finally obtain

Fo=n2G,(§)  &=x/n() = ). (C.7)

In this way we determined the scaling of the right-hand side of thed@atger equation (13),
if we impose the existence of Wronskian pairs (8).
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