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State reconstruction of wave packets moving in
time-dependent potentials and the existence of Wronskian
pairs

U Leonhardt, T Kiss† and P J Bardroff
Department of Physics, Royal Institute of Technology (KTH), Lindstedtsvägen 24, S-10044
Stockholm, Sweden
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Abstract. We determine a class of time-dependent potentials that support the state reconstruction
of one-dimensional wave packets. For this we extend the projection method (Leonhardt U and
Raymer M G 1996 Phys. Rev. Lett.76 1985) to explicitly time-dependent situations. We
require the existence of Wronskian pairs (regular and irregular wavefunctions) and analyse the
consequences on the possible potentials.

Quantum-mechanical wave packets travelling in known but otherwise arbitrary potentials
possess an interesting property: the motion of the packet reveals the quantum state [1–4].
The spatio-temporal probability distribution pr(x, t) of the corresponding particles contains
sufficient information to retrieve the density matrixρmn of the wave packet (denoted in
the energy representation). This theoretical concept [1–4] unifies and generalizes several
experimental methods of state determination: Optical homodyne tomography [5–7], molecular
fluorescence tomography [8, 9], and atomic-beam tomography [10]. Up to now, however, the
concept [1–4] has been restricted to stationary potentials‡. State reconstruction of wave packets
travelling in time-dependent potentials is interesting, because the motion could increase in
complexity (most notably in quantum chaos). Furthermore, the phase retrieval of nonlinear
waves [12] is based on an effective time-dependent potential. This problem is particularly
relevant [12] for the state determination of travelling Bose–Einstein condensates observed in
phase-contrast imaging [13]. Can we extend the ideas developed for stationary potentials [1–4]
to the time-dependent case [14]?

What are these ideas? The density matrixρmn in the energy representation is reconstructed
as the average

ρmn =
〈〈
∂

∂x

[
ψ∗m(x, t) ϕn(x, t)

]〉〉
x,t

(1)

with respect to the measured positionsx at all timest . By 〈〈F(x, t)〉〉x,t we denote the average

〈〈F(x, t) 〉〉x,t ≡ lim
T→∞

T −1
∫ +T/2

−T/2

∫ +∞

−∞
pr(x, t) F (x, t)dx dt (2)

† Permanent address: Department of Nonlinear and Quantum Optics, PO Box 49, H-1525 Budapest, Hungary.
‡ After submission of this paper, a letter [11] appeared that describes a hydrodynamical method for state reconstruction
of wave packets that travel in potentially time-dependent potentials.
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of a functionF(x, t)with respect to the spatio-temporal probability distribution pr(x, t). Here

ψn(x, t) = un(x)e−ıωnt ϕn(x, t) = vn(x)e−ıωnt (3)

denote the regular and irregular wavefunctions of the energy eigenstates|n〉. (For simplicity
we assume a discrete spectrum. For the continuous case see [15].) Both the regular and the
irregular wavefunctions are solutions of the Schrödinger equation

iφ̇n = − 1
2φ
′′
n +Uφn (4)

in appropriate units. Regular wavefunctions are normalized to unity, whereas irregular ones
obey the Wronskian condition

Wn = unv′n − u′nvn = 2. (5)

The condition implies [3] that irregular wavefunctions must not be normalizable. Analytic
examples of irregular wavefunctions are given in [16–18]. The key mathematical property of
the spatial derivative(ψ∗mϕn)

′ of regular and irregular wavefunction is the fact [1–4] that these
objects form an orthonormal system on products of wavefunctionsψµψ

∗
ν , i.e.

Dmn
µν ≡ lim

T→∞
T −1

∫ +T/2

−T/2

∫ +∞

−∞
ψµψ

∗
ν (ψ

∗
mϕn)

′ dx dt = δµmδνn. (6)

Therefore,(ψ∗mϕn)
′ projects the density-matrix elementsρmn out of the spatio-temporal

probability distribution

pr(x, t) = 〈x, t | ρ̂ | x, t〉 =
∑
µν

ρµνψµ(x, t) ψ
∗
ν (x, t). (7)

State reconstruction of wave packets from pr(x, t) is a non-trivial property, because some
counterexamples are known [19] for multi-dimensional spaces where the mapping between
pr(x, t) and the quantum state is not unique. Therefore, to extend state reconstruction to the
case of time-dependent potentials, we seek a similar structure as in the stationary case. There
are no stationary states in general, but we might assume that a basis of states|n〉 exists that
have pairs of regular and irregular wavefunctionsψn(x, t) andϕn(x, t). What do we mean by
that? Let us assume that the functionsψn andϕn are solutions of the Schrödinger equation (4)
that form aWronskian pair

ψ∗nϕ
′
n − ψ ′nϕ∗n = Wn W ′n = 0. (8)

How to find the wavefunctionsψn andϕn will not concern us at the moment; we will come to
this point later. Let us first examine the implications of the sheer existence of Wronskian pairs.
Given a functionψn, equation (8) formulates a differential equation forϕn with the solution

ϕn = Wnψn

∫
dx

ψ∗nψn
(9)

as is easily verified. The integration in the solution (9) is an undetermined integral with the
set of integration constants corresponding to the set of unique solutions of the differential
equation (8). Therefore, equation (9) is the general solution of (8). Equation (9) thus describes
uniquely the relation between the two functionsψn andϕn that form a Wronskian pair (8).

To proceed, we expand the wavefunctionsψn in (real) amplitude and (real) phase functions

ψn = uneiSn . (10)

We see from (9) thatϕn has the same phase factor asψn:

ϕn = vneiSn (11)
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and the amplitude

vn = Wnun

∫
dx

u2
n

. (12)

Let us formulate the Schrödinger equation (4) in terms of amplitude and phase:

− 1
2u
′′
n +

(
U + 1

2S
′2
n + Ṡn

)
un = 0 (13)

u̇n + 1
2S
′′
nun + S ′nu

′
n = 0 (14)

(and identical equations forvn). Equation (13) plays the role of the stationary Schrödinger
equation in the explicitly time-dependent case. We see that the potentialU is modified by the
term1

2S
′2
n +Ṡn that contains the spatial structure and the evolution of the phaseSn. Equation (14)

is a form of the conservation law for the probability densityu2
n with the probability fluxS ′nu

2
n,

because from (14) we obtain the result that∂(u2
n)/∂t + (S ′nu

2
n)
′ vanishes.

We show in appendix A thatvn satisfies the Schrödinger equation (13) automatically,
whereas the probability conservation (14) seriously restricts the possible choice of the phase
functionsSn

S ′′n = −
1

2

Ẇn

Wn

. (15)

The phaseSn is a quadratic function in space

Sn = an(t)x
2

2
+ bn(t)x −�n(t). (16)

Given the structure (16) of the phaseSn, we utilize the probability conservation (14) to
determine the structure of the amplitudesun. We show in appendix B thatun(x, t) is a scaled
functionwn(ξ) such that

un = η−1/2wn(x/η − ζ ) η = η(t) ζ = ζ(t) (17)

an = η−1η̇ bn = ηζ̇ . (18)

The irregular wavefunctions obey the same scaling.
We have seen that the existence of Wronskian pairs does restrict the wavefunctions. Let

us require another property that originates from the normalization

Dmn
mn = 1 (19)

of the desired orthogonal system (6) on products of wavefunctions. From (10) and (11) we
obtain

Dmn
mn = lim

T→∞
T −1

∫ +T/2

−T/2

∫ +∞

−∞
umun

[
(umvn)

′ + i(S ′m − S ′n)umvn
]

dx dt. (20)

In order to guarantee thatDmn
mn is real we require that(S ′m − S ′n) be zero, i.e.

Sn = S(x, t)−�n(t). (21)

From (16) and (18) we obtain

S(x, t) = η̇

η

x2

2
+ ηζ̇x. (22)

This result restricts the class of potentialsU(x, t). To see this we define the function

Fn ≡ U + 1
2S
′2 + Ṡ − �̇n (23)

and show in appendix C thatFn obeys the scaling

Fn = η−2Gn(x/η − ζ ). (24)
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Therefore we are lead to the requirement that the spatially independent part ofFn scales as

�̇n(t) = ωn

η2(t)
. (25)

The set of constantsωn play the role of energy eigenvalues and will be determined soon. We
obtain for the phases

Sn(x, t) = η̇

η

x2

2
+ ηζ̇x − ωn

∫
dt

η2
. (26)

Furthermore,Fn + �̇n should scale as

Fn + �̇n = U + 1
2S
′2 + Ṡ = η−2V (x/η − ζ ). (27)

We use this scaling property and equation (22) to obtain the class of potentials that support a
Wronskian pair (8) with the property (21):

U = η−2V (x/η − ζ )− η̈
η

x2

2
− (2η̇ζ̇ + ηζ̈ )x − η

2ζ̇ 2

2
. (28)

This is the central result of our paper. The existence of Wronskian pairs (8) with the property
(21) restricts the class of time-dependent potentialsU(x, t). Apart from a quadratic term they
are scaled and shifted stationary potentialsV (ξ). The explicit time dependence is brought
about by the scaling functionη(t) and the potentially time-dependent shiftζ(t).

We also employ the scaling property (27) to find the set of wavefunctions and the numbers
ωn. The amplitudesun obey (13) and, consequently,

− 1
2u
′′
n + η−2V (x/η − ζ )un = η−2ωnun. (29)

We apply the scaling (17) of the wavefunctions and see that thewn(ξ) are the eigenfunctions
of the stationary Schrödinger equation

−1

2

d2wn

dξ2
+ V (ξ)wn = ωnwn (30)

with potentialV (ξ) and eigenvaluesωn. The irregular wavefunction are then given by (12).
So far, we were concerned about the implications of the existence of Wronskian pairs (8) in

the case of a time-dependent potential. We determined the class of potentials that support such
pairs. Finally, we prove that our mathematical objects are indeed useful for state reconstruction.
We consider the overlap (6), utilize the structure (10) and (11) of the wavefunctions and the
phases (26) to obtain

Dmn
µν = lim

T→∞
T −1

∫ +T/2

−T/2

∫ +∞

−∞
uµuν (umvn)

′ exp
[
i(ωm − ωn − ωµ + ων)θ

]
dx dt (31)

with

θ(t) =
∫

dt

η2
. (32)

We see from the scaling of the wavefunctions, equations (17), that the spatial integral inDmn
µν

scales as ∫ +∞

−∞
uµuν (umvn)

′ dx ∝ 1

η2(t)
= θ̇ (t). (33)

We employθ as an integration variable in the temporal integral in (31), which is always
possible, becausėθ = η−2 > 0. We see thatDmn

µν vanishes unless

ωm − ωn = ωµ − ων. (34)
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This frequency constraint is one cornerstone of the orthogonality proof for the(umvn)
′ on

the products of wavefunctionsuµuν . In addition, we note that the amplitudesun and vn
are solutions of the Schrödinger equation (13) with the effective potentialU + 1

2S
′2 + Ṡ and

the eigenfrequenciesωn. Then we apply the reconstruction theorem [1] of one-dimensional
Schr̈odinger equations to prove that

Dmn
µν ∝ δµmδνn. (35)

We refer the reader to [3, section 3] for an extensive review of the underlying mathematics.
Finally, we turn to the normalizationDmn

mn = 1. We perform a three-line calculation
starting from equations (20) and (21), and, observingWn = u′nvn − u′nvn andW ′n = 0, obtain

Dmn
mn = lim

T→∞
T −1

∫ +T/2

−T/2

∫ +∞

−∞
umun (umvn)

′ dx dt

= lim
T→∞

T −1
∫ +T/2

−T/2

∫ +∞

−∞

[
Wnu

2
n + (umun)

′ umvn
]

dx dt

= lim
T→∞

T −1
∫ +T/2

−T/2
Wn dt −Dmn

mn. (36)

We see from (36) that the time average of the WronskianWn is twice the overlap integralDmn
mn .

The normalizationDmn
mn = 1 thus implies that

lim
T→∞

T −1
∫ +T/2

−T/2
Wn dt = 2. (37)

This generalizes the Wronskian condition (5) to our case of explicitly time-dependent
potentials.

In summary, state reconstruction of one-dimensional wave packets moving in time-
dependent potentials is possible but restricted to a particular class (28) of potentials, if we
require a similar structure (8) as in the time-independent case [1–4]. In essence, the allowed
potentialsU(x, t) are appropriately scaled and shifted stationary potentialsV (ξ) with an
additional quadratic term. The time dependence is brought about by an arbitrary scalingη(t)

and shiftζ(t). Of course, our result does not prove that otherwise state reconstruction is
impossible, but a radically different approach is required. In fact, Johansen [11, 20] has
recently found a hydrodynamical method for determining the state of a wave packet that moves
in a (potentially) time-dependent potential. Here the density matrix〈x + y, t0 | ρ̂ | x − y, t0〉
in position representation is reconstructed from the assumed knowledge of all temporal
derivatives of the probability distribution pr(x, t0) at a certain timet0. This is equivalent
to knowledge of the total spatio-temporal evolution pr(x, t), i.e. to our case, if and only if
pr(x, t) is an analytic function int on the real axis. Furthermore, Johansen [11] represents the
density matrix〈x+y, t0 | ρ̂ | x−y, t0〉 as a power series

∑∞
n=0 fn(x, t0)(n!)−1(2iy)n, assuming

〈x + y, t0 | ρ̂ | x − y, t0〉 to be analytic iny for all values ofx.
We may speculate that quantum chaos might limit quantum-mechanical state

reconstructions. Why? Classical state measurements are difficult for a chaotic system. The
evolution of the system may show little (or a drastic) influence of the initial conditions.
Therefore we would expect problems in quantum state determinations due to quantum
signatures of chaos [21]. Expressed in terms of the hydrodynamic approach, chaos may
render the probability distribution pr(x, t) and the density matrix〈x + y, t | ρ̂ | x − y, t〉 less
analytic. Note also that our class of allowed potentials correspond to regular motions of wave
packets, because theU(x, t) support a complete set of wavefunctions (17) that are scaled
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energy eigenfunctions of the potentialV (ξ). Therefore, to close this paper with a speculation,
the onset of quantum chaos may indeed limit our fundamental ability to infer quantum states
from moving wave packets.
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Appendix A

In this appendix we determine the structure of the phase factorsSn that is compatible with the
existence of a Wronskian pair (8). We will see that the probability conservation (14) imposes
a serious constraint. Let us start from the relation (12) between the irregular and regular
wavefunctions

vn = Wnun

∫
dx

u2
n

. (A.1)

We take the first and the second spatial derivative, and get

v′n = u′nWn

∫
dx

u2
n

+
Wn

un
(A.2)

v′′n = u′′nWn

∫
dx

u2
n

. (A.3)

Therefore

− 1
2v
′′
n +

(
U + 1

2S
′2
n + Ṡn

)
vn = 0 (A.4)

is satisfied, becauseun solves the identical equation (13). Let us see what

v̇n + 1
2S
′′
nvn + S ′nv

′
n = 0 (A.5)

i.e. the probability conservation forvn, requires. We differentiate the irregular
wavefunction (A.1) with respect to the timet , get

v̇n = u̇nWn

∫
dx

u2
n

+ un
∂

∂t
Wn

∫
dx

u2
n

(A.6)

and therefore

v̇n + 1
2S
′′
nvn + S ′nv

′
n = un

(
∂

∂t
Wn

∫
dx

u2
n

+ S ′n
Wn

u2
n

)
. (A.7)

The right-hand side of this equation vanishes if

∂

∂t
Wn

∫
dx

u2
n

+ S ′n
Wn

u2
n

= 0. (A.8)
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We take the spatial derivative of this equation and use the probability conservation (14) for the
regular wavefunctions to obtain

0= ∂

∂t

(
Wn

u2
n

)
+ S ′′n

Wn

u2
n

+ S ′n

(
Wn

u2
n

)′
= 1

u3
n

(
Ẇnun − 2Wnu̇n + S ′′nWnun − 2S ′nWnu

′
n

)
= 1

u2
n

(
Ẇn + 2S ′′nWn

)
(A.9)

and, consequently,

S ′′n = −
1

2

Ẇn

Wn

with W ′n = 0. (A.10)

The phasesSn are restricted to be quadratic functions inx.

Appendix B

In this appendix we determine the wavefunctionsun that satisfy

u̇n + 1
2aun + (ax + b)u′n = 0. (B.1)

We try the scaling ansatz

un = η−1/2wn(ξ) ξ = x/η(t)− ζ(t) (B.2)

and differentiate

u̇n = −1

2

η̇

η
un − η−1/2 dwn(ξ)

dξ

(
η̇

η2
x + ζ̇

)
(B.3)

u′n = η−1/2 dwn(ξ)

dξ

1

η
. (B.4)

The term in (B.1) that is proportional toun vanishes if

a = η̇

η
. (B.5)

The term that contains the derivative dwn/dξ is zero if, in addition,

b = ηζ̇ . (B.6)

In this way we have found the general solution of (B.1).

Appendix C

In this appendix we determine the scaling of

Fn = U + 1
2S
′2 + Ṡ − �̇n. (C.1)

In terms of theFn the Schr̈odinger equation (13) reads as

u′′n = 2Fnun. (C.2)

Therefore

u̇′′n = 2(Ḟnun + Fnu̇n) = 2(Ḟnun − 1
2S
′′Fnun − S ′Fnu′n) (C.3)
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using the probability conservation (14). On the other hand, we take the second spatial derivative
of (14), observeS ′′′ = 0, and get

u̇′′n = − 5
2S
′′u′′n − S ′u′′′n = −5S ′′Fn − 2S ′Fnu′n − 2S ′F ′nun. (C.4)

We combine equations (C.3) and (C.4) to obtain

Ḟn + 2S ′′Fn + S ′F ′n = 0 (C.5)

or, via the quadratic structure (16) of the phaseS,

Ḟn + 2aFn + (ax + b)F ′n = 0. (C.6)

We proceed along similar lines as in appendix B and finally obtain

Fn = η−2Gn(ξ) ξ = x/η(t)− ζ(t). (C.7)

In this way we determined the scaling of the right-hand side of the Schrödinger equation (13),
if we impose the existence of Wronskian pairs (8).
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